Boulder Glacier Retreat, Mount Baker

Boulder Glacier flows down the west side of Mount Baker a strato volcano in the North Cascades of Washington. This steep glacier responds quickly to climate change and after retreating more than 2 kilometers from its Little Ice Age Maximum, it began to advance in the 1950’s as observed by William Long. The glacier advance had ceased by 1979. From 1988-2008 we (NCGCP) have visited this glacier at least every five years recording its changes. In 1988 the glacier had retreated only 25 meters from its furthest advance of the 1950-1979 period. By 1993 the glacier had retreated 100 m from this position. At this time the lower 500 meters of the glacier was clearly stagnant. By 2003 the glacier had retreated an additional 300 m. In 2008 the glacier had retreated 490 meters from its 1980 advance position, a rate of 16 meters per year. The glacier as seen in 2008 despite the steep slope has few crevasses in the debris covered lower 400 meters of the glacier. This indicates this section of the glacier is stagnant and will continue to melt away. The transition to active ice in at the base of the icefall on the right-north side of the glacier. Below is the glacier in 1993 note the darkened cliff at adjacent to and right of the terminus. The picture below that is from 1998 again note cliff, than in 2003 from the same location as the 1993. Than an image from 2008 of the terminus from further upvalley, as it is not clearly in view from the previous location. And a picture from Asahel Curtis taken in 1908. This glacier after 25 years of retreat is still not approaching equilibrium and will continue to retreat. This is a reflection of continued negative mass balance as measured on the adjacent Easton Glacier. It does respond fast to climate change, and the climate has not been good for this glacier. The glacier does have a consistent accumulation zone and can survive current climate.Picture from August, 1993 of the terminus of Boulder Glacier Picture from August 1998 of the terminus of Boulder GlacierPicture from August 2003 of the terminus of Boulder Glacier.Boulder Glacier in August 2008. Boulder Glacier in 1908 viewed across the glacier at the present terminus location during a Mountaineers trip taken by Asahel Curtis. A satellite image from 2009 (green=2009, brown=2006, purple=1993 yellow=1984), shows additional retreat now at 515 meters from 1984 to 2009, 20 meters per year. An examination of the same view of the terminus in 1993 and 2009 indicates the extent of the retreat and the reduction in crevassing below the icefall. (boulder terminus change

For 30 years the North Cascade Glacier Climate Project has focused on observing the response of glaciers to climate change.

Grasshopper Glacier, Montana-nearly gone

Grasshopper Glacier, the largest is located about 19 km. north of Cook, Montana within Custer National Forest. The glacier on Iceberg Peak occupies a north facing cirque at nearly 3300 m. (11,000 ft.). In 1940, it was about 1.6 km. wide and on its northwest side terminated in a 15-m. cliff. In 1966, seen below, the glacier had an area of 0.42 square kilometers. The name of the glacier is derived from the myriads of grasshoppers that were embedded in the ice. These grasshoppers either were downed by sudden storms or were carried over the glacier by strong air currents, where the cold forced them onto the ice surface. The grasshoppers are an extinct type of Rocky Mountain grasshoppper Melanoplus spretus. They perished here, were buried by new snow and preserved. At the time the glacier ended in a small lake. Progressively the glacier has retreated. By 1966 it was 0.6 km long, in 1994, seen below, 0.36 km long and in 2006 0.27 km long.

In 2005 this glacier has ceased to exist as a glacier, there are a few remnant perennial snow and ice patches the largest with an area of 0.05 km2. In the majority of recent summers the glacier has lost all of its snowcover. Glacier survival is dependent on consistent accumulation retained on the glacier each summer, this glacier will not survive. The glacier has continued its rapid recession and the further segmentation into small disconnected segments, heralds the end of an active glacier. We do have a gorgeous new alpine lake in its place. Notice the basin is still largely devoid of plant life and the surface still has the color of newly exposed-deposited sediments.

Gilkey Glacier Retreat, Juneau Icefield

gilkey glacier changeAbove is a paired Landsat image from 1984 left and 2013 right indicaing the 3200 m retreat during this period of Gilkey Glacier.The Juneau Icefield Research Program has long monitored the mass balance of the Lemon Creek and Taku Glacier on the Juneau Icefield. This program begun by Maynard Miller in 1946 and continuing through today has also monitored the terminus behavior of the icefields outlet glaciers. Of the 17 significant outlet glaciers 5 have retreated more than 500 m since 1948, 11 more than 1000 m, and one glacier the Taku has advanced. I have a chance to visit the glaciers during a number of summers over the last 25 years as part of this ongoing annual program. The Gilkey Glacier is a 32 km long 245 km2 outlet glacier flowing west from the Juneau Icefield. In 1948 it terminate at the head of a braided outwash plain. At that time it was joined 5 km above the terminus by the Battle and Thiel Glaciers from the south. gilkey 1948All three of these glaciers drain from the Juneau Iceifeld accumulation zone between 1500 and 2000 m, which maintain consistent snow cover. From 1948 to 1967 the Gilkey Glacier retreated 600 m and in 1961 a proglacial lake began to form. By 2005 Gilkey Glacier had retreated another 3200 m , generating a proglacial lake that is now 3.9 kilometers long, which is approximately the amount of retreat in the last 60 years as well. gilkey 2005The lake is partly filled with large icebergs from disintegration of the, note below in an image from Scott McGee of JIRP,Gilkey terminus. The lake is currently terminating in this still growing lake. Approximately half of this retreat occurred after a 1991 satellite image indicated the lake was close to half its current size. The retreat has been resulted from calving icebergs into the new lake as well as thinning from melting in the lower reach of the glacier. The extensive debris cover and lack of crevassing in the lower 1500 meters of the glacier indicates that this section is stagnant and will break up soon. Gilkey-Terminus

Gilkey Glacier was in 1955 joined by the tributary glaciers Battle and Thiel Glacier. A visit to the Battle Glacier in 1982 indicated that it had separated from the Gilkey Glacier and the Thiel Glacier, but the Thiel Glacier was still connected. By 1991 the Thiel Glacier had separated. Today these glaciers terminate 3200 m and 1700 m up their respective valleys from Gilkey Glacier. Thiel has retreated 1700 m from the Gilkey Glacier. A retreat of 3200 m has created a glacier 70 % its former length. The vast bare valley beyond the terminus is in stark contrast to the map above. Thiel Glacier has extensive lateral moraines extending above the glacier terminus indicating the ongoing retreat. The lower 3 kilometers of this glacier are flat and are downwasting, indicating a substantial retreat is still underway. A view up the valley from the Gilkey toward the terminus of Battle Glacier indicates that most of the area deglaciated was a flat low elevation valley. Now that the glacier is retreating up a steeper slope, the retreat rate of Battle Glacier should slow.battle terminus

Columbia Glacier year by year

The following pictures give a year by year view of Columbia Glacier within one day of August 1. The best year was 1999, the worst, 2005.The snowy peaks of the Monte Cristo region can be seen from the Everett area. With 30 glaciers many at low altitudes, this region may receive more snow than any other region in the North Cascades. The largest and lowest is Columbia Glacier occupying a deep cirque above Blanca Lake and ranging in altitude from 4600 to 5700 feet. Kyes, Monte Cristo and Columbia Peak surround the glacier with summits over 2000 feet above the glacier. The Monte Cristo range is the first major rise that weather systems coming off the ocean encounter on the way east to the Cascade Crest. As a result precipitation is heavy. During the summer if it is raining anywhere in the North Cascades it will be in the Monte Cristo region. The glacier is the beneficiary of heavy orographic lifting over the surrounding peaks, and heavy avalanching off the same peaks. We measure the mass balance of this glacier each year and report the data to the World Glacier Monitoring Service. The location is gorgeous as seen in this painting by Jill Pelto Despite the advantages of snow accumulation the glaciers mass balance since 1984 has average -0.5 m a year for a cumulative loss of 13 m. For a glacier that averages 60 m in thickness this is over 20% of its volume. Details of the mass balance research and methods are at

Columbia Glacier has retreated 134 m since 1984. Lateral reduction in glacier width of 95 m in the lower section of the glacier and the reduction in glacier thickness are even more substantial as a percentage. The major issue is that the glacier is thinning as appreciably in the accumulation zone in the upper cirque basin as at the terminus. This indicates a glaciers that is in disequilibrium with current climate and will melt away with a continuation of the current warm conditions. The glacier has lost 17 m in thickness since 1984, but still remains a thick glacier, over 75 meters in the upper basin and will not disappear quickly.

A lateral moraine deposited during the Little Ice Age, is visible at the western edge of the glacier, descending below the glacier to 4250 feet. This moraine has little vegetation on the inside, but is vegetated on the outside. Just in front of the terminus are two terminal moraines deposited during retreat in the last 20 years. Facing southeast Columbia Glacier is protected from any afternoon sun except during the summer. During the winters storm winds sweep from the west across Monte Cristo Pass dropping snow in the lee on Columbia Glacier. Avalanches spilling from the mountains above descend onto and spread across Columbia Glacier. The avalanche fans created by the settled avalanche snows are 20 feet deep even late in the summer. Nearly a third of the glacier is covered by avalanche fans, but no summer avalanches have been observed. Avalanches, shading from the sum provided by the high peaks, and wind drift snow deposition permits Columbia Glacier to exist at such a low altitude.

Devon Ice Cap

Two recent papers have examined the changes in flow, mass balance and volume of the Devon Ice Cap(Shepherd et al., 2007) (Dowdeswell, 2004). The Devon Ice Cap on Devon Island in the Canadian Arctic ice cap’s area has an area of 14,000 km2, with a volume of 3980 km3 . The ice cap area decreased by 332 km2 (2.4%) between 1960 and 2000.devon ice cap
The mass balance of the glacier has been assessed since 1960, the total mass loss due to surface melting and runoff between has been about 59 km3. Between 1960 and 1999 about 21 km3 of ice was lost from the ice cap by calving of icebergs, contributing 0.21 ± 0.02 mm to global sea level over this time. The long term mean net surface mass balance was 0.13 m from 1960-2000. From 1998-2007 the mean annual balance has been -0.23 m year, a substantial increase. belcher glacier The Belcher Glacier above is the principal outlet glacier calving up to 30% of the total iceberg volume from the ice cap.
Devon Ice Cap’s negative balance has been due to warming and greater ablation, as the upper part of the glacier has seen some increase in accumulation, which has been more than offset by increased melting. dic mbIn this case the mass balance record indicates a dramatic worsening after 1995. It will be interesting to see the ablation results from the summer of 2008, when record melting was noted both in northern Greenland and northern Ellesmere Island. The glacier is not alone in its behavior, the Prince of Wales Icefield has had a negative mass balance over the last forty years of -80 km3, equivalent to a mean-specific mass balance across the ice field of -0.1 m w.e. a-1, contributes 0.20 mm to global eustatic sea level rise (Mair et at., 2008).
Photographs of the fieldwork coordinated by the University of Alberta

26th Annual North Cascade Glacier Climate Project 2009 Field Season

This video examines the 2009 North Cascade Glacier Climate Project Field Season. It is a look more at where we work, than what we find. Mass balances were substantial averaging -1.93 m. The winter season was wetter than average, with close to average snowpack in the North Cascades. Summer melt conditions were exceptionally warm, leading to enhanced melting and considerable losses in glacier volume. The mass loss of approximately 2 meters represents about 4% of total glacier volume, gone in one year. In July ablation averaged 8.5 cm per day. For glaciers that average 50-60 m in thickness that is the loss of 2.5 m in one month. Most of the melt was snowpack from the previous winter. However, by mid-August blue ice was exposed on the majority of the glacier surfaces across the North Cascades and any ablation was a loss in long term glacier volume. In the case of Columbia Glacier at the end of August a view of its surface indicates only a few white patches of snow remaining. Glacier retreat was slowed on Rainbow and Ice Worm glaciers where the terminus was buried under avalanche snow. Retreat of Easton Glacier was 20 m, Lower Curtis Glacier 11m, Daniels Glacier 12 m, Lynch Glacier 8 m. All 42 glacier observed retreated in 2009. Easton Glacier developed a new rock outcrop in the midst of the glacier. More details on this project North Cascade Glacier Climate Project
[url=http://www.youtube.com/watch?v=DJGQXlvWXy8]

Bugaboo Glacier, British Columbia Retreat

Bugaboo Glacier is the most visible glacier of the Bugaboo Range in southern British Columbia. The Conrad Kain Hut who was the first mountaineer to explore the range is adjacent to the glacier and is the main starting point for climbers lured to the region by the fantastic quartz monszonite spires. Since Conrad Kain’s visit in 1910 with the famous mountain explorer Tom Longstaff the Bugaboo Glacier has retreated 2150 meters. The glacier continues to flow around both sides of Snowpatch Spire, the aptly named peak surrounding by the glacier on the left side of the glacier. Also notice the glacier width declines as it descends past a prominent ridge trending toward the glacier from the right, before expanding in the valley below. bugaboooldThe glacier used to flow all the way to the valley bottom. The active front was both steep and crevassed By the early 1970’s the glacier had retreated from the valley bottom and had begun to retreat up the mountain slope adjacent to the Kain Hut. Snowpatch Spire is still surrounded by ice, but ice that is not as crevassed, indicating reduced thickness and velocity. The glacier than ended somewhat below where the ridge approached from the right of the glacier.
bugaboo72 In the ensuing 34 years the glacier has continued to retreat up the slope and is notably thinner coming down the final steep slope. The glacier ends at the termination of the ridge on the right of the glacier. The glacier has retreated 420 m since 1972. bugaboo6. The first view is nearly identical to the 1972 view and the second more similar to the 1910 viewbugaboo06 A Google Earth image from 2005 of the terminus region indicates that the lower 700 meters of the current glacier is thin and lacks any crevasses indicating it nearly stagnant. By 2012 the terminus had retreated 80-90 m from 2005, yellow arrow indicates 2012 terminus, pink arrow 2005. This is in contrast to an active front, which indicates a healthy glacier, that would be thick and crevassed. A healthy glacier can still be retreating, the front was active at the time of my first visit to the glacier in 1984. The glacier is still 3.5 kilometers long and even after the retreat the glacier will still have a substantial length and area. bugaboo terminus 2005

bugaboo terminus 2012

Honeycomb Glacier Retreat, New Lake Formation

Honeycomb Glacier is one of the longest and largest glaciers in the North Cascades. It is currently 3.7 km long and has an area of 3.1 km2. It has retreated 2.05 kilometers since its Little Ice Age Maximum. The glacier was an imposing site to C.E. Rusk who recounted his early 20th century exploration (1924). Like all 47 glaciers observed by the North Cascade Glacier Climate Project it has retreated significantly since 1979.

A 1960 photograph taken by Austin Post shows the glacier ending with no lake at its terminus. The terminus is gentle and has no crevasses, indicating it is relatively stagnant and poised to melt away. The glacier has retreated 1.3 km from its Little Ice Age moraines at this point. In 1967 another Austin Post image indicates a new small lake forming at the terminus.
honeycomb In 1995 we visited the margin of this lake, where the glacier ended in 1967 and took a photograph back to the glacier. As seen below retreat to this point was 400 m. honeycomb  1995 A pair of images from Bill Arundell in 1973 and Lowell Skoog in 2006 indicate the scale of the retreat, these images do not show the actual terminus but do show the main nunatak-rock island and how much it has become exposed in the 33 years. This nunatak was hardly evident in 1960, and in a 1940 image of the glacier literally did not yet exist.honeycomb-glacier-1977-2006 The terminus had retreated 400 m from the 1967 position to 1995. In 1987 a new lake began to form at the terminus of the glacier at 1680 m. The glacier is shown ending in this lake in 2002 from both the far end of the lake and the nunatak above the lake, the glacier had retreated 210 m since 1995. In 2006 the glacier retreated from the end of this lake. This is a shallow lake that may eventually be filled in by glacier sediments. The terminus is flat and stagnant ending at 1680 m in the lake. Thus, the rapid retreat will continue, the glacier is still not close to acheiving a post LIA equilibrium. Glacier retreat from 1940-1967 averaged 9 m/year. Retreat was minor between 1967 and 1979. The retreat rate since 1979 has been greater than 38 m/year, with a total retreat of 700 m. The nunatak in the middle of the glacier, which was beneath the ice in 1940 is now 90 m above the ice. The section of the glacier below the nunatak in 2002 is stagnant with no crevasses. honeycomb new lakehoneycomb2002aIndicating this glacier will retreat at least to the base of this rock knob, which will then no longer be a nunatak. A comparison of Google Earth Imagery from 1998 and 2009 illustrate the appearance of numerous new bedrock knobs in the area where there was an icefall in 1995.
survive The upper portion of the glacier has retained its snowcover in recent years indicating the glacier can survive current climate at a much smaller size.honeycomb2002b

Dramatic Retreat of Antler Glacier, Alaska

antler glacier 2013
Above is a pair of Landsat images from 1984 and 2013 indicating the 2600 m retreat of Antler Glacier in that period. Below is a detailed analysis of the glacier.
The Antler Glacier is an outlet glacier of the Juneau Icefield. It is actually a distributary glacier of the Bucher Glacier. It splits from the Bucher Glacier 8.5 km above where the Bucher Glacier joins the Gilkey Glacer as a tributary. In 1948 it spilled over the lip of the Antler River valley from the Bucher Glacier and flowed 6 kilometers downvalley to end in a proglacial lake. The glacier was 6200 m long in 1948. Note the comparison of the USGS map based on 1948 photographs and the 2005 satellite image below. Antler_Glacier mapantler glacierMy only chance to see this glacier in person was in August, 1981 scouting the geology along the Bucher Glacier. Antler Glacier disappeared downvalley into the fog and light snow flurries. The terminus not in site, and icefall to daunting to wish to descend. By 2005 the glacier has retreated almost to the lip of the valley, a 5400 m retreat which is 85-90% of it total length. The Lake -Antler Lake- has expanded from a length of 1.6 km to 4.2 km. The lake is a gorgeous sight, and the valley once filled by the glacier is now nearly devoid of glacier input. Antler_Lake_The retreat is largely a result of reduced flow from the thinning Bucher Glacier which no longer spills over the valley lip significantly. As the Bucher Glacier continues to thin, the Antler Glacier will cease to exist. This thinning is due to increased melting (ablation) of the glacier. The neighboring glaciers Field and Gilkey Glacier have also thinned and retreated considerably.

Peridido Glacier Retreat

The Peridido Glacier, Pyrenees Mountains, Spain has lost 92% of its area since 1894. The glacier lost 50% of its area declining from 90 hectares to 44 hectares from 1991 to 2001. Pyrenees Glacier report, written by a group of scientists including Enrique Serrano from the Universidad de Valladolid and Eduardo Martínez de Pisón from the Autónoma de Madrid has noted the loss of 50-60% of the entire area of Pyrenees Glaciers since 1990. The images of Peridido Glacier from 1898 and 1910 were provided by Eduardo Blanchard. In 1910 as seen in the picture below right, the glacier has three sections each connected. The upper section connected with the mid section by a narrow crevassed icefall, the crevasses indicate active movement. The middle section is connected to the lower avalanche fed section by a wide crevassed icefall. The lower section is not heavily crevassed and has thinned and pulled back from the terminus moraine of the Little Ice Age. This moraine is the sediment ridge in the foreground. By 1998 there is no connection between the three sections, the lower section is nearly gone, with just a bit or relict ice. There are very few crevasses indicating a lack of active movement. The glacier is melting more or less in place. The Pyrenees have experienced a 0.9 C degree warming since 1910.Perdido 1910 Balcon Pineta
Perdido 1998 Balcon Pineta
Peridido Glacier is rapidly disappearing, at the current rate of area loss it cannot survive to 2050, and more likely not until 2030. It is not alone in the Pyrenees, at least three glaciers have disappeared in the last 15 years, Balaitus, La Munia and Perdigurero.

Lyman Glacier a Century of Change-Years Numbered

This blog will focus glacier by glacier on the changes that are resulting from climate changes. Each has a unique story, yet there will be a recognizable refrain. Lyman Glacier, North Cascades, Washington retreated 1300 m from 1907 to 2008. Below is the glacier viewed from near Cloudy Pass in 1921 on a Mountaineers expedition and in 2005.

lyman 1921lyman2005

This 76% loss in length has been accompanied by a 88% loss in area and a 91% loss in glacier volume. I first visited the glacier in 1985, and have since been to the glacier on 15 occasions, twice with Bill Long, who first visited the glacier in 1940, measuring its terminus position then. The glacier currently ends in a beautiful expanding glacier lake, with an impressive ice cliff that is 40 meters high, 26 meters above the water. This aids in the retreat as the glacier does calve icebergs occassionally. The rate of retreat is 11 meters per year, for a glacier that is 440 m long, this gives the glacier 40 years at the current retreat rate. The glacier is losing area at a rate of 4% per year, giving it 25 years to survive. Volume loss is between 4 and 5% per year, giving the glacier 20-25 years to survive. By any measure with current climate Lyman Glacier will not survive to 2050.   For this glacier the warmer summers since 1977 and the reduced snowpack due to more winter rain events has hastened its decline. The glacier is near a snow measurement station of the US Dept. of Agriculture, which indicates an 18% decline in mean April 1 snowpack since 1945, despite a small rise in precipitation. The glacier is no longer large, but still has considerable thickness, up to 50 m. This particular glacier has not approached equilibrium since the end of the Little Ice Age. Its loss has been hurried along by the recent warming. Even small glaciers take a long time to fully melt away.[url=http://www.youtube.com/watch?v=SiJzgiKReZI]

lyman 2008